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Final Report for grant DAAG55-98-1-0177

The research under this grant focused on the reconstruction of physical objects In this report
we distinguish between (1) research on geometric-topological foundations and algorithm devel-
opment, (2) research related to technology transfer and targeting the problem definition, (3)
implementation work and computer experimentation. This division corresponds roughly but
not precisely to the responsibilities of the supported personnel. The grant supported the work
of Herbert Edelsbrunner, Arts and Sciences Professor of Computer Science and Mathematics
at Duke University. His role was the theoretical formulation and solution of problems. He has
expertise in algorithms, geometry, and topology. The grant payed for a small fraction of the time
of Ping Fu, for her contributions in technology transfer. Ping Fu is also CEO and President of

Raindrop Geomagic and she is a Research Associate Professor in the Computer Science Depart-
- ment of Duke University. Her work includes the formulation of theoretical problems motivated
by practice as well as the identification of industrial applications for new theoretical results. The
grant payed for a 50% Research Assistantship, which was used to hire Ho-Lun (Alan) Cheng and
Afra Zomorodian, both graduate students at the University of Illinois at Urbana-Champaign,
the former institute of the PI. The papers submitted with this report are

[1] H. Edelsbrunner, M. A. Facello, P. Fu, J. Qian, D. V. Nekhayev. Wrapping 3D sbanning data. In
“Proc. IS&N/SPIE’s Sympos. Electronic Imaging, 1998”, San Jose, California, 148-158.

[2] T. K. Dey, H. Edelsbrunner, S. Guha and D. V. Nekhayev. Topology preserving edge contraction.
Publ. Inst. Math. (Beograd) (N. S.) 66 (1999), 23-45.

[8] A. ZoMORODIAN AND H. EDELSBRUNNER. Fast software for box intersections. Internat. J.
Comput. Geomi. Appl. 12 (2002), 143-172.

[4] H.-L. Cheng, H. Edelsbrunner and P. Fu. Shape space from deformation. Comput. Geom. Theory
Appl. 19 (2001), 191-204.

[5] H.-L. CrENG, T. K. DEY, H. EDELSBRUNNER AND J. SULLIVAN. Dynamic skin triangulation.
Discrete Comput. Geom. 25 (2001), 525-568.

[6] H. EDELSBRUNNER, D. LETSCHER AND A. ZOMORODIAN. Topological persistence and simplifi-
cation. Discrete Comput. Geom. 28 (2002), 511-533.

[7] H. EDELSBRUNNER, J. HARER AND A. ZOMORODIAN. Hierarchical Morse-Smale complexes for
piecewise linear 2-manifolds. Discrete Comput. Geom., to appear. ’

[8] H. Edelsbrunner and R. Waupotitsch. Adaptive simplicial grids from cross-sections of monotone
complexes. Internat. J. Comput. Geom. Appl. 10 (2000), 267-284.

[9] H. EDELSBRUNNER AND D. Guoy. Sink-insertion for mesh improvement. Internat. J. Found.
Comput. Sci. 13 (2002), 223-242.

[10] H. Edelsbrunner and D. R. Grayson. Edgewise subdivision of a simplex. Discrete Comput. Geom.
24 (2000), 707-719.

[11] S.-W. Cheng, T. K. Dey, H.Eéelsbranner, M. A. Facello, and S.-H. Teng. Sliver exudation. J:
Assoc. Comput. Mach. 47 (2000), 883-904.

[12] H. Edelsbrunner and D. Guoy. An experimental study of sliver exudation. Engineering w. Com-
puters 18 (2002), 229-240.




We structure the report in four sections corresponding to the main four topics covered by the
twelve publications: surface reconstruction and simplification ([1, 2, 3]), surface deformation
and shape space ([4, 5]), topological features ([6, 7]), and volume meshing ([8, 9, 10, 11, 12]).

1. SURFACE RECONSTRUCTION AND SIMPLIFICATION

Paper [1] describes the capabilities of our surface reconstruction algorithm. Given a set of points
in three-dimensional space, this algorithm reconstructs the surface from which the points are
sampled. Depending on the data, the surface may be ambiguous or may not exist at all. Any
algorithm has to have a way to deal with such situations. The paper illustrates the strengths
and weaknesses of our algorithm by showing how it performs for a variety of input data. In
many ways, the surface reconstruction problem is at the core of our work on surfaces and at
least partially motivates the other research conducted. Ping Fu played a key role in identifying
problems that needed solutions to improve or extend out capability to reconstruct surfaces. She
also played a key role in prioritizing these problems.

An extension of surface reconstruction is surface simplification. It is frequently the case that the
input data is over-sampled, which leads to heavy surface representations consisting of too many
triangles. To simplify a surface means to find a coarser triangulation that represents the same
shape, up to some accuracy. We implemented the edge contraction algorithm described in M.
GARLAND AND P. S. HECKBERT, Surface simplification using quadratic error metrics. Comput.
Graphics, Proc. SIGGRAPH 1997, 209-216. A sub-problem that has not been solved in that paper
is how to prevent the algorithm to change the topological type of the surface. Paper [2] gives a
complete analysis of this problem, both for two- and for three-dimensional triangulations. The
two-dimensional results have been fully implemented in our software.

Paper [3] studies the implementation of a fast algorithm for finding intersecting boxes. The moti-
vation for this work was the isolation of self-intersection detection as a subproblem of the surface
reconstruction problem. Given a triangulated surface, we enclose each triangle by a box and
test triangle pairs for intersections if their bounding boxes overlap. Later we found additional
applications, such as determining the distance between two surfaces or a surface and a point
set. The theoretical algorithm used in our implementation is based on the idea of streaming a
segment tree, as described in H. EDELSBRUNNER AND M. H. OVERMARS, Batched dynamic
solutions to decomposable searching problems, J. Algorithms 6 (1985), 515-542. Besides giving
the implementation, the main result in [3] is the documentation of the dramatic effect of hy-
bridization as an algorithmic technique that can lead to substantial improvements in the running
time.

I1I. SURFACE DEFORMATION AND SHAPE SPACE

Our work in this area is based on the class of surfaces introduced in H. EDELSBRUNNER, De-
formable smooth surface design, Discrete Comput. Geom. 21 (1999), 87-115. Surfaces in this




class are referred to as skins; they are piecewise quadratic and have continuous normal directions
and maximum curvatures. Each skin surface is specified by a collection of weighted points in
three-dimensional space and uses advanced geometric concepts based on the Voronoi diagram
to achieve computational efficiency.

Paper [4] exploits the fact that skin surfaces deform continuously when we vary the controlling
points and their weights. With this property, it is possible to define canonical deformations of one
shape to another or, more generally, between k+1 > 2 shapes. The deformation operation forms
a k-dimensional vector space of shapes. This space is a powerful structure with applications in
computer graphics (where the idea of morphing between more than two shapes has been picked
up and has recently flourished), in drug design (where one is concerned with the variety of the
molecular shapes with medical applications), and other areas in which geometric shapes play a
significant role. ’

Paper [5] describes an algorithm that maintains the mesh of a deforming surface. It combines
operations that adapt the surface to changing shape (which amounts to moving the mesh ver-
tices), to changing curvature (which amounts to changing the local density of vertices), and to
changing topology (which requires local re-connections within the mesh.) The implementation
of the algorithm is delicate and is still being improved. The most common current use of the
software is for constructing smooth surfaces of protein conformations. The high quality of the
mesh supports down-stream applications, including the 3D printing of these molecules using
layered technology and the computation of electro-static distributions using the finite element
method. :

II1. TOPOLOGICAL FEATURES

The two topological concepts studied here are motivated directly by work described above.

The motivation for paper [6] is the observation that noise in the data cannot be treated with
geometric methods alone but requires quantifiable topological methods as well. We approach
this problem by introducing the topological persistence of features in a geometric or topological
object given as a filtration. The filtration is a nested sequence of complexes, and each complex
represents the view of the object at some resolution. Intuitively, the persistence of a feature is
the width of the resolution window in which the feature appears as part of the shape description.
In other words, it is a numerical expression of how persistent the feature is under changes of
the resolution. The main result of the paper is that this intuitive notion can be made concrete
in terms of the homology groups of the complexes in the filtration. The paper also gives an

algorithm for computing the persistence and presents experimental results obtained with its
implementation.

Part of the motivation for paper [7] is the need to decompose potentially complicated surfaces
into patches that, in some sense, are natural and conform with what might call the topological
features of the surface. We attach the problem using the concept of a Morse-Smale complex




for a piecewise linear height function. Our main contribution is the development of algorithmic
techniques that permit the construction of such complexes through the simulation of a smooth
height function. The key point here is that a-Morse-Smale complex is really only defined from
smooth functions, while data in practice is sampled and after interpolation only piecewise linear
continuous. The notion of topological persistence discussed above is then used to define and
construct a hierarchy of progressively simpler Morse-Smale complexes. This hierarchy is essential
if we want to apply Morse-Smale complexes to continuous problems, for which all useful notions
of features are scale dependent. Typically, the appropriate scale level depends on the context
and cannot be predetermined.

IV. VOLUME MESHING

In this area we consider tetrahedral representations of three-dimensional domains. The first
three papers study the problem of mesh refinement from different angles. The last two papers
describes a solution to the problem of slivers in three-dimensional Delaunay tetrahedrizations.

Paper [8] extends work on the incremental construction of Delaunay triangulations, reported
for example in H. EDELSBRUNNER AND N. R. SHAH, Incremental topological flipping works
for regular triangulations, Algorithmica 15 (1996), 223-241. It does this by forming hierarchies
that can be used for on-line and local mesh-refinement and -coarsening. Paper [9] suggests
that certain circumcenters of tetrahedra are better suited for mesh-refinement than others.
This claim is substantiated with a suite of experiments that show that the restriction to these
special circumcenters leads to numerical improvements and computational savings. Paper [10]
extends the common subdivision of a triangle into four similar triangles to tetrahedra and higher-
dimensional simplices. We expect that this extension will be used to generalize the popular
subdivision method in computer graphics to three- and higher-dimensional domains.

A sliver in a three-dimensional Delaunay triangulation is a relatively flat tetrahedron. Its
combination of small and large angles creates troubles down-stream for numerical algorithms
using the triangulation as a mesh. Slivers have been recognized as a serious stumbling block in
scientific computations, but progress on methods that can eliminate slivers has been slow. Paper
[11] is considered a breakthrough in this area. It shows that slivers can be eliminated by assigning
modest weights to the points and change the Delaunay into a weighted Delaunay triangulation.
The algorithm for eliminating slivers is fast, but the numerical bound on non-flatness we managed
to proof has been disappointingly small. Paper [12] shows that the numerical bound that can
be achieved in practice is about 5°, which is significantly larger than the pessimistic theoretical
bound.



